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A Laboratory on Cubic Polynomials
Arkady Alt

Most Crux readers will be familiar with quadratic polynomials, and know how to
solve the corresponding equations by completing the square or using the quadratic
formula. Far fewer people know how to solve a cubic equation ! In this lab, we will
study polynomials of third degree P (x) = ax3 + bx2 + cx+d, corresponding to the
cubic equation

ax3 + bx2 + cx+ d = 0 ,

(We will always assume the coefficients of the polynomial to be real, though we
will consider roots which are not.)

We can reduce the polynomial to monic form (in which the leading coefficient
equals 1) in various ways. The simplest way is, of course, to divide the entire
polynomial by a. But we can also do it by a change of variables : letting x = (t/a)
and multiplying by a2, we obtain the monic equation

t3 + bt2 + act+ a2d = 0 .

Such a reduction is useful when we want to keep the coefficients as integers ! In
the particular case where d = 1, obviously x = 0 is not a root, and we can also
reduce the equation to monic form by substituting x = (1/t).

In what follows, we suppose that the cubic equation has – somehow or other – the
form

x3 + rx2 + px+ q = 0 for p, q, r real. (1)

Problem 1 Prove that the equation (1) always has at least one real root.

Hint : Show that there exists a pair of numbers m,M with P (M)P (m) < 0. Then
use the Intermediate Value Theorem.

Problem 2 Prove that, for any a ∈ R, f(x) = (x − a) · g(x) + f(a), where g(x)
is a quadratic polynomial.

Hint : Which quadratic polynomial ?

Let x = a be a root of f(x). Then f(x) = (x− a) · g(x), where g(x) is a quadratic
polynomial. If g(a) 6= 0 we shall say that x = a is a simple root of the equation
f(x) = 0 ; otherwise it is a multiple root. If g(a) = 0 , we have two possibilities :
either g(x) = (x−a)2 or g(x) = (x−a) · (x− b) for b 6= a. In the first case the root
a has multiplicity 3 and f(x) = (x− a)3. In the second case, it has multiplicity 2
and f(x) = (x− a)2 · (x− b).

Problem 3 Prove that for any cubic equation of form (1) one of the following
must hold ; and find an example of each case.

1. f(x) = 0 has one simple real root and no other real roots

2. f(x) = 0 has three simple real roots
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3. f(x) = 0 has one real root of multiplicity 2 and one simple real root

4. f(x) = 0 has one real root of multiplicity 3.

What conditions on p, q, r force each case ?

If the equation f(x) = 0 has all of its roots real, then one of (2-4) must be the
case. Only the case of one simple real root is eliminated.

Problem 4 Prove that the three real numbers x1, x2, x3 (some or all of which
could be equal) are roots of equation (1) if and only if they satisfy the following
three conditions : 

x1 + x2 + x3 = −r
x1x2 + x2x3 + x3x1 = p

x1x2x3 = −q
(2)

This is the cubic case of Viète’s theorem and the above system of equations is
called Viète’s system.

Before we go on, we note that equation 1 can be reduced by the further substitution
x = y − r

3 to the form

y3 + b · y + c = 0 (3)

with no quadratic term.

Problem 5 Derive formulae for b, c in terms of p, q, r.

Now we consider this equation in more detail.

Problem 6 Show that if b > 0, then equation (3) has a unique real root, which
if we hold b fixed (say b = 1) can be considered as a function y(c) of the other
coefficient. Show that if, furthermore, c > 0, then y(c) < 0.

Problem 7 Show that y(c) as defined above is monotone decreasing, continuous,
and twice differentiable on (−∞,∞). Find the derivative dy/dc.

Problem 8 Let y(c) be as defined above.

a) Find the second derivative d2y/dc2.

b) Show that y(c) is concave down for c < 0, concave up for c > 0, and has a
point of inflection at c = 0. (You can prove this part without using deriva-
tives.)

We now return to the question of computing the roots of equation (3). The case
b = 0 is fairly trivial (what are the roots in this case ?), so we concentrate on the
remaining cases.

Case I : b > 0. Make the substitution

y =

 
b

3
·
Å
t− 1

t

ã
in equation (3) and manipulate it to obtain a quadratic equation in t3.
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• Is it always soluble within the real number system ?

• Is it always equivalent to the original equation in the sense of having the
same set of roots ?

• If this calculation has introduced extraneous roots that are not roots of the
original equation, how can they be removed ?

Case II : b < 0. Make the substitution

y =

 
b

3
·
Å
t+

1

t

ã
in equation (3).

• In this case, it is possible that the resulting quadratic equation has no roots
- when does this happen ?

• What conditions on b and c will guarantee roots ?

• The quadratic equation may have two roots - what do we do with them ?

• Are there extraneous roots ?

• Have we found all the roots of equation (1), and if not how do we find the
rest ?

The next approach uses a trigonometric transformation.

Problem 9 Consider the cubic equation

4t3 − 3t = d (4)

where |d| ≤ 1. Set d = cos(α) and use the substitution t = cos(φ) to show thatß
t0 := cos(

α

3
), t1 := cos(

α+ 2π

3
), t2 := cos(

α+ 4π

3
)

™
is the full set of real roots of (4). How does the multiplicity of the roots depend on
d ?

Problem 10 Suppose that |d| > 1 in equation (4). Prove that

t0 :=
3
√
d+
√
d2 − 1− 3

√
d−
√
d2 − 1

2

is the unique real root.

Hint : prove that |t0| ≥ 1.

Problem 11 Consider the cubic equation

4t3 + 3t = d (5)
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Prove that

t0 :=
3
√√

d2 − 1 + d− 3
√√

d2 − 1− d
2

is its unique real root.

Problem 12 Show that the equation y3 + by+ c = d can be put into the form (4)
or (5) by the substitution y = 2

√
|b|/3t, depending on the sign of b.

Problem 13 Use Problem (12) to formulate the results of problems (9-11) for the
equation y3 + by + c = 0. How does the value D := (q/2)2 + (p/3)3 help classify
the possible cases ?

We now consider cubic equations with real coefficients but with complex roots. For
convenience, we will write our original equation in the form

x3 − rx2 + px− q = 0 . (6)

Problem 14 Prove that this equation always has three solutions in the set of
complex numbers, counting each root with its correct multiplicity.

We will introduce a discriminant for cubic equations. Readers will recall that for
a reduced quadratic x2 + bx+ c with roots x1, x2, the discriminant is defined to be

∆ := b2 − 4c = (x1 + x2)2 − 4x1x2 = (x1 − x2)2 .

When this is positive, the quadratic has two distinct real roots. When it is zero,
it has a double root, and when it is negative, a complex-conjugate pair.

For a reduced cubic polynomial, the discriminant is defined to be

∆ := (x1 − x2)2(x2 − x3)2(x3 − x1)2 .

This has similar properties.

Problem 15 Prove the following statements :

1. ∆ > 0⇔ all three roots are distinct and real ;

2. ∆ = 0⇔ at least two roots are equal and all are real ;

3. ∆ < 0⇔ one root is real and the others are complex conjugates

Problem 16 Suppose the cubic polynomial to be in the form (3). Show that ∆ =
−4a3 − 27b2.

The discriminant ∆ doesn’t give us complete information about the nature of the
roots : when ∆ = 0 we don’t know whether we have one double root and one single
root, or one triple root. We can determine this using

∆1 := (x1 − x2)2 + (x2 − x3)2 + (x3 − x1)2 .
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Problem 17 Suppose that ∆ = 0. Show that there is a triple root if and only if
∆1 = 0.

Problem 18 For a cubic polynomial in the form (6), prove that

∆ = r2p2 − 4r3q − 4p3 − 27q2 + 18rpq .

Problem 19 For a cubic polynomial in the form (6), prove that

∆1 = 2(r2 − 3p) .

Problem 20 For a cubic polynomial in the form (6), prove that necessary and
sufficient conditions for all roots to be real and positive are

r, p, q,∆ ≥ 0 .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The article is adapted with permission from an article by Arkady Alt in Delta
(Nov. 1994).

Arkady Alt
San Jose, CA, USA

Math Quotes

In the fall of 1972 President Nixon announced that the rate of increase of inflation
was decreasing. This was the first time a sitting president used the third derivative
to advance his case for reelection.

From “Mathematics Is an Edifice, Not a Toolbox”, by Hugo Rossi, Notices of
the AMS, v. 43, no. 10, October 1996.
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